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ABSTRACT

The inviscid, linear, non-axisymmetric, temporal stability of the boundary layer associ-

ated with the supersonic flow past axisymmetric bodies (with particular emphasis on long

thin, straight circular cylinders), subject to heated or cooled wall conditions is investigated.

The eigenvalue problem is computed in some detail for a particular Mach number of 3.8,

revealing that the effect of curvature and the choice of wall conditions both have a significant

effect on the stability of the flow.

Both the asymptotic, large azimuthal wavenumber solution and the asymptotic, far down-

stream solution are obtained for the stability analysis and compared with numerical results.

Additionally, asymptotic analyses valid for large radii of curvature with cooled/heated wall

conditions, are presented. We find, in general, important differences exist between the wall

temperature conditions imposed in this paper and the adiabatic wall conditions considered

previously.

1Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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§ 1. Introduction and Motivation

The recent resurgence of interest in high speed flight vchicles has

rekindled interest in supersonic and hypersonic flows. One important

area of aerodynamic study is that of boundary-layer stability and the

possible transition to turbulence. Since turbulent flows result in

considerably greater skin frictions and heat transfer coefficients than do

laminar flows, any method by which a boundary layer may be stabilized

is worthy of investigation.

Generally it is found in the case of supersonic boundary-layer flows

that inviseid disturbances are more important (i.e. more unstable) than

viscous disturbances. (Here, we characterise inviscid disturbances as being

those with wavelengths comparable to the boundary-layer thickness, whilst

viscous disturbances possess much longer wavelengths). This is in contrast

to the situation encountered for many incompressible boundary-layer flows

where viscous instabilities are generally dominant. The first authors

to gibe any form of rigorous mathematical account of the stability of

compressible boundary layers were Lees and Lin (1). Making use of

a rational asymptotic approximation they determined that the quantity

• _u* •

_y, [ p _y ] (where u denotes velocity tangential to the surface,

y the normal to the surface, and p* the fluid density) plays a key

role, similar to that the quantity _2u*/_y*2 has in incompressible

theory. In particular at the point where the above expression is zero

i

(Y*=Yi), termed the generalised inflexion point, then there may exist a

neutral mode with wavespeed u*(Yi*); neutral modes are classed as being

''subsonic'', "sonic'' or "supersonic" depending on how the freestream

Mach number is related to the wavespeed (Mack (2)). If the neutral

disturbance is subsonic then the mode decays in the far-field; supersonic,

neutral disturbance modes exhibit an oscillatory behaviour in the far.field;
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a sonic mode occurs at the crossover point between subsonic and supersonic

cases. Mathematically, these classifications are directly related to the

non-dimensional wavespeed c (defined in (2.10) below), and the

free-stream Mach number M_,. For subsonic disturbances we have

i 1
1 K,,<c < I+K,, ,

for sonic disturbances we have

1 !
c = 1- K,, or c = I+K, * ,

and for supersonic disturbances we have

! 1
c < 1- _,, or c > 1+ l_,,.

Arguments relating to generalised inflexion points have no implications

for supersonic neutral modes.

Lees (3) considered the effect that wall cooling has on the

stability of compressible boundary layers on the basis of asymptotic

theory. He predicated that with sufficient wall cooling the boundary

layer could be completely stabilized and presented a criterion whereby

the ratio of wall temperature to the recovery temperature at which the

critical Reynolds number becomes infinite, can be computed. Even though

Lee's original work contained numerical errors, subsequent authors

Including Van Driest (4) and Dunn and Lin (5) showed that Lee's predictions

appeared to be correct.

Van Driest (4) calculated the cooling required to completely

stabilize the boundary layer on a flat plate at supersonic speeds with

zero pressure gradient. Whereas Lee's investigations were limited to low

supersonic flows, Van Driest predicated that complete stabilization was

achievable by wall cooling over a wide range of Mach numbers up to

hypersonic flow. He found, however, that for Math numbers greater than 9,
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it is impossible to stabilize the boundary layer with any amountof

cooling whena Prandtl numberof 0.75 and the Sutherland

viscosity-temperature law are assumed.

The above predictions of Lees (3) and Van Driest (4) were based

on the asymptotic theory of two-dimensional disturbances. Dunn and Lin

(5) extended this work to include three-dimensional disturbances and

they indicated that cooling was indeed an effective method by which the

boundary layer could be stabilized for moderate supersonic Mach numbers.

Based on their asymptotic analysis, Dunn and Lin, however (wrongly)

concluded that at supersonic free-stream Mach numbers the boundary layer

can never be completely stabilized by cooling with respect to all three-

dimensional disturbances.

However the above asymptotic work is found to have its limitations.

The theory above indicates the possible existence of only subsonic

generalised modes for cooled wall conditions. In a series of papers Mack

(2, 6, 7, 8, 9, 10, 11), using numerical techniques, demonstrated that

for compressible boundary layers there in actual fact exist a large

(probably infinite) number of unstable modes, including many with supersonic

neutral points, which may not be predicated by the above asymptotic work.

For the case of three-dimensional disturbances in Blasius-type boundary

layers, Mack showed that the so-called ''first mode" of instability

undergoes stabilization with sufficient wall cooling, thus verifying the

above mentioned asymptotic analysis. However, Mack found in the case of the

''second mode'' of instability (which turns out to be more important because

of the larger growth rates involved) cooling the wall actually destabilizes

this mode. According to recently presented numerical observations by Mack

(2, 10) oblique disturbances can be completely stabilized by wall cooling

for Mach numbers up to 5.8, although they do require a larger amount of

cooling than the corresponding two-dimensional disturbance terms.
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Recently, Duck (12), considering the effect of curvature on the

inviscid axisymmetric stability of a compressible boundary layer,

determined that it has a profoundly stabilizing effect. Considering

axisymmetric, inviscid disturbances in the supersonic boundary layer formed

on a thin straight circular cylinder with adiabatic wall conditions, he

determined that the effect of curvature is to completely stabilize the

"first mode'' of inviscid instability at a comparatively short distance

downthe axis of the cylinder and causes the "second mode" of instability

to undergo substantial maximumgrowth rate reductions at increasingly

further downstreamlocations along the cylinder axis. All the numerical

evidence though, is that for large distances downstreamthe ''second mode"

is still present, having a very small, but measurablegrowth rate. Duck

also observered that the inclusion of curvature terms causes the

generalised inflexion condition described above to be altered and he

derived a modified (or "doubly generalised") inflexion condition,

involving the radius of curvature.

The work of Duck (12) wasextended to include non-axisymmetric

disturbance terms by Duck and Shaw(13) (here-after refered to as DS)

and they applied their techniques to a different axisymmetric configuration,

namely that of a sharp cone. DSgeneralised the doubly generalised

inflexion condition further, to give a condition for the existence of so

called inviscid, neutral non-axisymmetric modesand termed it the

''triply generalised inflexion condition"

In this paper we consider the combinedeffects that curvature

and wall cooling (or heating) have on the stability of the compressible

boundary layer associated with an axisymmetric body (principly a thin,

straight circular _ylinder). We are interested in both axisymmetric and

non-axisymmetric, inviscid disturbances. The theory for the form of the
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boundary layer and the resultant disturbance equations has already been

presented by Duck (12) and in DS, to which we refer the reader to for

details, but we shall begin this paper with a brief account of the relevant

equations to the present problem. It should be noted that although the work

in DS was for a sharp cone, the necessary equations for a circular cylinder

for this problem are easily obtained by setting the slope parameter,

in DS to zero.

§2 Fommlafion of Problem

The general layout of the problem is shown in Figure 1. The z

axis lies along the cylinder axis, r* denotes the radial coordinate,

and 0 the azimuthal coordinate. We have a supersonic flow incident

normal on the end-face of the cylinder (which has radius a*), where

M** represents the free-stream Mach number, O= the free-stream velocity

(in the axial direction) and p_, It=, and T= represents the free-stream

density, first coefficient of viscosity and temperature respectively. We

define the Reynolds number to be

* a* *Re = U= p= (2.1)
P_,

and this will be assumed to be large throughout. Subscript = denotes

free-stream conditions.

For the resultant boundary layer formed on the cylinder we make the

following assumptions'-

Firstly following previous authors we shall assume an absence

of any shock wave in the basic flow. We feel justified in making this

assumption, as the chosen 'thinness' of the boundary layer is such that the

shock wave will be sufficiently far away from the boundary layer to have

negligible effect.

law, where

= C T*,

and C

Secondly we shall assume the linear Chapman viscosity

(2.2)

is assumed to be constant. Since the flow is one of high
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Reynoldsnumber, we makethe steady boundary-layer approximation. A

fundamentalcomponentof this work is the inclusion of curvature terms

into the governing equations. To achieve this we assumethat the body

radius is generally of the sameorder as the boundary-layer thickness (a

similar approach wasadopted by Sebanand Bond (14), Duck and Bodonyi

(15), Duck (12) and in DS), except at the tip of the cylinder where we

shall assumethe boundary layer has zero thickness (as assumedby Sebanand

Bond (14)). The final assumptionwe shall makeis that of a perfect gas.

Makinguse of the abovementioned assumptions, in DS, weobtained the

following system of non-dimensional, leading order equations for the basic

flow

0

3P
_'7 =0,

Ov 3 + v3 Ov 3 _ T O [ r T _v3 ],V 1

_F- _ r Or t Or J

Vl _7"+ v3 _ "

(2.3)

(2.4)

(2.5)

v 1 = v 3 "= 0 on r=l,

v 3 4 1, T 4 ! as r .., ,,, (2.7)

together with a wall temperature condition which for heated or cooled walls

0, and has no azimuthal velocity component (i.e. v 2 = 0).

The boundary conditions for the problem are

temperature terms respectively, y denotes the ratio of specific heats
i

• _ Cp
and a =_ is the Prandtl number, with K* being the coefficient of

heat conduct|vity; in (2.3)-(2.6) the basic flow is assumed Independent of

_ T _ , (2.6)

where U,(Re-lCvl,v2,v3) represent the velocity components in the

(r*=a*r, 0, z* = Re a*C-lz) directions respectively, p*R*T*P

(where R* is the gas constant) and T_T represent the pressure and
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(2.8)

was solved using a straight-

and

where

itv

E = exp[ _-: (z-ct) +

To(r) = T (r,z)

wo(r) = v3(r,z)

in 0l, (2.10)

and 8

diminishingly small.

in this paper we focus our attention on temporal stability for which

the growth rate is _c i, where a represents the spatial wavenumber

and c i is the imaginary part of the wavespeed. If c i > 0 we then

have growing disturbances, if c i = 0 the disturbance is neutral and if

(2.11)

= z½, _ = (r-l)/_, z = z /a , (2,12)

is the perturbation parameter and as such is assumed to be

The system of equations (2.3)-(2.6)

forward Crank-Nicolson scheme, as described in DS, subject to the boundary

conditions (2.7) and (2.8).

To study the stability of this basic flow, we now investigate the

effect of small amplitude disturbances. We shall assume that the

disturbance wavelength is generally comparable to the boundary-layer

thickness and therefore also of the body radius (0(a*)), in which case

the parallel flow approximation is completely vindicated.

At a fixed z-station we express the flow parameters of velocity,

pressure, temperature and density as the sum of a mean flow term plus a

small, first order disturbance term, for example,

v I -- 5otU** q_(r) E + 0(62),

v 3 = IJ**[wo(r) + 8 _3(r)E] + 0(82),

T* = T** [To(r) + 8 T(r)E] + 0(82),

P* = p**R T** [l+Sp(r)E] + 0(82), (2.9)
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ci < 0 the disturbance decays.

Substitution of the flow parameters into the full system of equations

of continuity, momenta, energy and state, discarding 0(5 2 ) terms and

all but the largest terms in Re, we obtain a sixth order system, which

after some algebra (as described in DS) can be reduced to the following

system

ia2(w0"c) _ = .

TO 7M2_

(2.13)

i.._L_, = (wo_c)_n [Won (_o-c);l_.
yM2. I+_

(2.14)

where

n2_ 2¢ = TO [1 + ] M_(w0-c)2 (2.15)
_2(1+n_)2

and

The boundary conditions are

: _q = 0 on _ = O,

! ^

q) -(Poo KnO])

- _.,gn(n)

(2.16)

as _ _ -, (2.17)

where

: + 0t[l-M_(l-c)2]t ' (_ + _). (2.18)

It should be noted that the argument of the modified Bessel function

A

(i.e. appropriate sign in (2.18)) Kn(rl) is chosen to ensure boundedness

in the farfield.

The system Of equations (2.13), (2.14) was solved using a Runge-

Kutta scheme for the eigenvalue c, as described in OS, subject to the

boundary conditions (2.16), (2.17).
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§3 Numerical Results

Most of this section will be devoted to the effect of wall-cooling

on the stability of compressible boundary layers and its interaction with

curvature, as these conditions are likely to be of interest in important

applications. However, at the end of the section we shall give some heated

wall results which exhibit some additional interesting physical features.

As in DS we shall make one choice of Prandtl number (0=0.72),

Mach number (_,,=3.8) and ratio of specific heats (T=l.4).

3.1. Cooled Wall Results

We begin by considering the effect that wall cooling has on the

inflexion points. In DS a condition was derived for the existence of

inviscid, neutral, non-axisymmetric modes in the boundary layer on an

axisymmetric body, which was termed the ''triply generalised inflexion

condition'' However this condition does involve the azimuthal and

streamwise wavenumbers a and n, and so it is difficult to forecast,

prior to any numerical investigation, the existence of neutral stability

points of this kind. However in the case of axisymmetric disturbances,

this is no longer the case, since the condition reduces to

d [ ]
rTo(r)

as determined by Duck (12).

Figure 2a shows the axial variation of radial position of the

generalised inflexion points for the temperatures shown. As in the

insulated cylinder case (12), the graphs display two prominent features:

(i) the inflexion points occur in pairs and (ii) there exists a

critical value of _, downstream of which no such points exist. The point

= 0 corresponds to the tip of the cylinder and as such corresponds to

the planar case as studied by Mack (2). We find that as the surface

of the cylinder is cooled, the lower inflexion point lifts up off the
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cylinder surface. For sufficient cooling the lower point coalesces with

the upper inflexion point and further cooling results in the complete

disappearance of the inflexion points. Therefore for a given t-station

there exists a critical wall temperature below which no inflexion points

exist. In light of our earlier comments, we do have an additional condition

for the existence of neutral subsonic disturbances, namely that

! 1
I [i_.< c < 1 + ]_t.." (3.2)

This has direct implications on the first mode of instability as this

generally requires the presence of an inflexion point in the profile

satisfying (3.2).

Figure 2b shows the axial variation of w0(_i ) for the displayed

wall temperatures. From stability theory, unstable subsonic modes only

exist if a generalised inflexion point satisfying (3.2) occurs somewhere

in the boundary layer. Examination of the curve for Tw = 3.0 reveals that

subsonic generalised inflexion points only occur for 0 _ _ _ 0.0795;

consequently the mode has completely disappeared before the generalised

inflexion points have merged. For a wall temperature of Tw = 2.0 the

generalised inflexion points are all now supersonic in nature (c < 1 ]_L,),

implying for this and all cooler wall temperatures the eradication of Mode I

instabilities.

We now turn our attention to the eigenvalue problem for both

axisymmetric and non-axisymmetric disturbances. We shall present only

results for unstable modes and all plots are for c i (where c = c r + ici).

The first set of results we present corresponds to the tip of the cylinder

and as such are comparable to the planar results as obtained by Mack (2, !0,

11). Figure 2c displays distributions for the first mode of

instability. We observe that all the modes originate as sonic (i.e. with

c = I _) neutral modes and terminate as subsonic, generalised

inflexionai modes. We note that as we cooi the surface of the :cylinder

|

!
|
!

I
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this mode undergoes stabilization, until, with sufficient cooling it becomes

completely stable, thus verifying Mack's observations (and those of Lees

(3), Van Driest (4) and Dunn and Lin (5)). From our inflexion point

results, this is to be expected, as we observed that for cool enough

1
wall conditions, w0(_i ) drops below i _ and we no longer have the

necessary conditions for a subsonic generalised inflexional mode.

Figure 2d shows the second mode of instability at the tip of the

cylinder. All the modes originate as subsonic generalised inflexional

modes with the special case c( = c r = wo(_i)) = 1, which therefore

corresponds to a generalised inflexion point in the freestream, and

terminate as neutral modes. Depending on whether or not a subsonic

generalised inflexional mode for the given wall conditions exists, this

neutral mode is either subsonic inflexional or supersonic, in nature,

and the mode may continue as a decaying mode (ci<O). Examination of our

results reveals that as we cool the cylinder surface, the maximum value

of c i increases slightly and then decreases but the important product

ac i, actually increases with wall cooling. Thus we deduce that wall

cooling destabilises the second mode of instability, in line with Mack's

(2, 10, !1) observations.

The next set of results we present corresponds to a relatively small

distance from the tip along the cylinder in the axial direction, at the

location _ = 0.05, and for an axisymmetric mode (ie, n=0). Figure 2e

displays the Mode I distributions and we note that with sufficient cooling,

it is again possible to completely stabilize this mode. We observe that the

neutral mode at which this instability originates now occurs for a

slightly greater than zero and it is very slightly supersonic in nature.

When compared with the corresponding planar results we note that curvature

(as noted by Duck (12) and DS) has a profoundly stabilizing effect. Even

though this station is only a relatively short distance along the cylinder
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from the tip, curvature has reduced the value of maximum c i for the

Tw = 3.0 curve by a factor of 4, while for the Tw = 2.8 curve this

factor is almost 5. Curvature results in the mode requiring less cooling

to completely stabilize it. Figure 2f displays the axisymmetric mode II

instability at this axial location. Again we note that curvature has had a

stabilizing effect on the instability, but cooling causes the mode to become

more unstable, in line with the planar results described previously.

The next set of results we present corresponds to the 4=0.05 location,

for azimuthal wavenumber n=l. Figures 2g, 2h display the mode I and II

instabilities, respectively. We observe that in this case the mode I

instability is substantially more unstable than the axisymmetric case. We

find again, however, with sufficient cooling we can completely stabilize

this mode, although the mode does persist for cooler wall conditions. The

mode II instability has the same qualitative features as the axisymmetric

case, although it is slightly more stable than the axisymmetric case.

In DS it was noted that near the cone tip, for non-axisymmetric

disturbance terms, a third mode of instability is seen to develop. This new

mode originates as a neutral mode at a=0, with ci#O, terminates as a

supersonic neutral mode and was termed in DS, mode IA. As has already

been noted, the work of DS was for a cone with adiabatic wall conditions

and it was found that this new mode had already amalgamated with mode I

instability at the 4=0.05 location for n=l. We find however that for a

cooled cylinder at this axial location and n=l, the mode IA instability

is still distinct (Figure 2i) over the range of Tw shown; a possible

partial explanation is provided in Section 6. We observe that wail cooling

causes mode iA instability to become less unstable and with sufficient

wall cooling we can completely stabilize it. Comparing with the mode I

instability we note that the maximum value of c i for the mode IA

instability is an order of magnitude larger, but due to the smallness of a,
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the mode I growth rates are generally larger. One further observation,

though, is that mode IA instability persists for cooler wall temperatures

than does the mode I instability.

We now consider the situation for an azimuthal wavenumber of n=3, at

this axial location. _e observe that for this case the mode I and IA

instabilities have now amalgamated. The new combined mode originates as a

neutral mode (but with ci_0 for a=0) and terminates as a subsonic

generalised inflexional mode (Figure 2j). Again we note that sufficient

wall cooling can completely stabilize this mode, although it is found that

this mode persists for cooler wall temperatures as n increases. Comparing

with the n=l results we find that the increase in n has also caused the

mode to become slightly less unstable. The mode II instability (Figure

2k), again, has the same qualitative features, but has also undergone

stabilization with the increase in n. However, it is found that cooling

has the more dominant destabilizing effect here.

The next set of results we present correspond to an azimuthal wavenumber

of n=5, at this axial location. We observe the same qualitative features

as the n=3 results for both modes (Figures 21, 2m), although we note that

we have had a more significant stabilizing effect due to the increase in n.

The mode I instability is now completely stabilized for higher wall

temperatures, while again, it is observed that cooling causes an even more

marked destabilizing effect for the mode II instability.

We find that as the azimuthal ,avenumber n is further increased, both

the mode I and II instabilities undergo additional stabilization,

although cooling maintains a destabilizing effect on Mode II. For large

n it is found that Mode I instability is completely stabilized while the

mode II instability persists, but with much diminished growth rates. In

the next section we shall consider the asymptotic structure of the

disturbance equations in this limit.
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The final set of results we shall present in this sub-section corresponds

to the axial location _=0.5 and for an azimuthal wavenumber of n=l. We

find that at this distance along the cylinder the mode I and IA

instabilities have now combined (Figure 2n). Comparison with the n=l

results at the 4=0.05 location, we note that growth rates have been

reduced due to the stabilizing effect of curvature. It is found, however,

that the combined mode prevails for cooler wall conditions, but again is

completely stabilized with sufficient wall cooling. Figure 20 displays the

mode II instability. Curvature has resulted in the growth rates being

reduced, but we observe that cooling has a more profound destabilizing

effect here.

As we move further along the cylinder in the axial direction, the mode

I and II instabilities undergo further growth-rate reductions. For a

given wall temperature, Tw, azimuthal wavenumber n, axial wavenumber a,

there exists a critical value of 4, beyond which no triply generalised

inflexion points (see DS for details) occur. Consequently, we expect the

mode I instability to have disappeared for axial distances larger than

this critical 4, which is bourne out by our numerical results. It is

found however that due to the special nature of the inflexional point within

the freestream, the mode 1I instability still originates with c=l, even

for axial distances greater than this critical 4, although the mode has

much reduced growth rates. In the light of this, in Section 5 we shall

consider the form of the disturbance equations in the limit of large 4.

3.2 Heated Wall Results

We begin by considering the effect that wall heating has on the

inflexion points_ We restrict our study to the case of axisymmetric

disturbances, and consider the effect wall heating has on condition (3.1).
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Figure 3a shows the axial variation of (radial) position of the

generalised inflexion points for the temperatures shown. We observe again

ihe features seen in Figure 2a. Close to the cylinder tip, however, we find

that for a small axial distance measured from the tip, we no longer have any

lower inflexional points. As we heat the surface of the cylinder further,

this axial distance is found to increase. It is also observed that wall

heating causes the critical value of 4, beyond which no inflexional points

exist, to increase. For Tw=4.5, the critical value of _ is about

0.216, while for Tw=6.0, we have had a substantial increase to a value of

= 0.423. This will have direct implications on the first mode of

instability which we expect to persist for larger axial distances as the

wall is heated. These effects are in many ways to be expected, being the

converse of the cooling observations described earlier,

Figure 3b shows the axial variation of w0(q i) for the displayed wall

temperatures. The most marked feature of these curves is that as we heat

the cylinder surface, the lower inflexionai point becomes subsonic past a

critical value of 4, which is temperature dependent, i.e. for axial

distances greater than this critical value of _ but upstream of the station

beyond which no inflexional points occur, both generalised inflexional

points are now subsonic in nature. The first wall temperature for which we

observe a lower, subsonic inflexional point is for a wall temperature of

about Tw=4.5. It is found, however, that the critical value of _ here, is

very close to the stations where the generalised inflexional points coalesce,

For Tw=5.0 we observe that for the range 0.2635 5 _ 5 0.2720 we have two

subsonic inflexional modes, while for the hotter wall temperature of Tw=6.0

we have the larger range 0.363 < _ < 0.423 for which both generalised
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inflexional points are subsonic. In these t-ranges we expect the appearance

of two subsonic generalised inflexional modes to have a significant effect

on the physics of the problem.

We now present eigenvalue results for axisymmetric disturbances only.

As in the case of cooled wall conditions we focus attention on unstable

modes. We begin by considering the effect wall heating has on the

mode I and It instabilities for a t-station close to the cylinder tip

(_=0.05) and consequently the lower inflexional point is still supersonic

in nature. Figure 3c shows the mode I instability for the temperatures

shown. We observe that all the modes originate as neutral modes at a value

of _ slightly greater than zero, and are very slightly supersonic in

nature. We find as we heat the wall this neutral mode tends towards the

sonic value. All the modes terminate as subsonic generalised inflexional

modes, continuing on as stable modes (ci<O) for larger values of _.

These observations are similar to the results obtained for the axisymmetric

cooled wall case for this t-station. We find, as we would expect, heating

the surface of the cylinder causes the mode I instability to become more

unstable - converse to the effect of cooling on this mode.

Figure 3d displays the mode II instabilities for the _=0.05 station,

at the temperatures shown. We find all the modes originate as subsonic

generalised infiexional modes, rise to a maximum and terminate as subsonic

generalised infiexional modes (which then continue in all the cases

presented as stable modes). Heating the cylinder wail causes the mode II

instability to become less unstable and the numerical evidence suggests that

with sufficient heating we can completely stabilize this mode.

We new consider the effect that the lower inflexional point becoming

subsonic has on the mode I and II instabilities. Figure 3e displays

the mode I instability for a wall temperature of Tw=5.0 and for the
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_-stations as marked. For the _=0.26 station (where the lower inflexional

point is still supersonic) the mode originates as a very slightly supersonic

mode and terminates as a subsonic generalised inflexional mode. For the

_=0.264 station the lower inflexional point has now become subsonic in

nature, and we find the mode l instability now originates as this lower

subsonic generalised inflexional mode. Consequently the value of a for

the neutral mode has increased correspondingly. As before, the mode I

instability terminates as the upper generalised inflexional mode which is of

course subsonic, as well. From the inflexional point curves we know that as

we move upstream the inflexional points move closer together, eventually

coalescing and this is reflected in the new form of the mode 1

instabilities. For the _=0.27 station the mode I instability occurs

over a much smaller a-range and the growth rates are greatly reduced.

Figure 3f displays the mode I instability for a wall temperature of

Tw=6.0 and the displayed _-stations. Again we note that as the lower

inflexional point becomes subsonic the neutral point at which the

instability originates transforms from being very slightly supersonic in

nature, to this inflexional mode. Movement upstream causes the a-ranges

and growth rates to be diminished, but the reduction is less marked (in

comparison with the Tw=5.0 results) due to the destabilizing effect

brought on by wall heating.

The appearance of a second subsonic generalised inflexional mode is

found to have no effect on the mode II instability as it always terminates

as the upper generalised inflexional mode. It is found, however, that a

third mode of instability exists, originating as the lower generalised

inflexional mode and terminating as a slightly supersonic neutral mode.

This new mode, which we shall term Mode IIA, occurs for values of a

greater than the value of a for which the mode II instability terminates.

It appears that the mode II instability continues as a stable mode and
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then becomes unstable again at the lower generalised inflexional point.

The growth rates of the mode IIA are found to be very small. For a wall

temperature of Tw=5.0 and the station _=0.27 the growth rates are in the

order I0 -11, while for Tw=6.0 and _=0.364 the growth rates are of the

order of l0 -13 - i0 -14

We now move on to consider the form of the disturbance equations in

the limit of large azimuthal wavenumbers.

§4. Disturbance Equations for Large n

In this section we consider the form of the disturbance equations in the

asymptotic limit of large n, guided by our numerical results.

2_

4.1 Formulation of the Problem

Consider the pressure disturbance equation as derived in OS

w -c d (w0-c)_ TO Pn = ¢p,
_ [ _ ] + [ l+rl; - wOrl] O_2(wo-c)w0-c

where

(4.1)

n 2 _2
O = TO [ I + a2(i+n;) 2 ] - M_ (w0-c)2. (4.2)

In the limit of large n our numerics suggest that the corresponding

streamwise wavenumbers for the instability also increase, and that

¢(_=0) ---, 0. Equation (4.2) suggests we must have

= _n, _ = 0(1). (4.3)

A (sensible) balancing of terms in equation (4.1) suggests asymptotic

expansions of the form

c = cO + n"2/3 cI + O(n "413) + ....

= *0 + n'213 Ol + O(n'4/3) + .... (4.4)

!



-19-

The leading order pressure equation has the form

ct2

Pq_ - '_0 4)0 P = 0,

where

42
q)0 -- TO [ 1 + _2 ] - M2_,(w0-c0)2[ l+rl_i 2

This has a solution of the (bounded) WKB type (assuming

lm{(-¢O)½} > o

We can re-write the expansion for _ in the neighbourhood of

!

* ; ¢0(0) + n'2/3 [ ¢0 (0) g + ¢1 (0) ] + 0(n'4/3),

where

_=0

4 2 2*o(O)=Tw[i ,73 -M_co,

¢1(0) =- 2 co c 1M_,

and for insulated wall conditions

' _ '%(0) = 2 _s Zw- a2 + 2 M wo(O) co ,

while for heated or cooled wall conditions wc have

, 2 2 4 3 T W M_ w0(0)¢0(0) = Toq(0) [ 1 + ] - e2 + 2 c 0,

where Tw represents the wall temperature.

If ¢0(0) = O, then we must have

Twt [ _+ _2 ]_
cO = i.

We now seek to determine the first order(which is clearly real).

(4.5)

(4.6)

(4.7)

as

(4.8)

(4.9)

(4.1o)

(4.11)

(4.12)

(4.13)
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correction term to c, namely c 1. For this we must study the wall layer,

which by a balancing of terms of (4.2) suggests is given by

= _ n 2/3, _ = 0(1) . (4.14)

The (bounded) solution for P in the wall layer is given by

P = PO Ai(_),

where PO is a constant and _ is givcn by

(4.15)

7 = [ a-'2 ti/3 0'0(0)_ 01(0)]i •

rw [,0(0)] 2 [ +
(4.16)

The boundary condition at the wall is

[rl=O = O.PI1

which we transform to _-space, giving the equation

[ -i/3 _-B ] = o,

whe re

-2

• t

Tw[_o(O)] 2

(4.17)

(4.18)

B = O1(0). (4.19)

Now since the solution in this region to the pressure is given by Airy's

function (4.15) we have that

Ai _ [ _ = B X 1/3 ] = O. (4.20)

Transforming back to R-space we have the result

Yn = , [ - *1(0) ] (4.21)
Tw[,0(0)]2

whe re 7n (where n = 1.2 .... ) represent the solutions of the equation

w

Ai (. 7n) = O. (4.22)
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Substituting either (4.11) or (4.12) and C(luation (4.10) into equation

(4.21) yields the first order correction term for c I namely

Cl = 0.213 Yn,
',12_c0

(4.23)

for insulated walls. _hilst I or he;tied/coo)led _all conditions we have

' l_ ' _2 2/3-o," _,, [1 + ] }t,,/3 {2 t,,2.,,o(o)co ] +T,,
C[ = ,_

2 Ct2/3 _1_ C0

where c I is real for both c:_scs.

Since Yn is a solution ol CtlU,tlioll 14.22), _here Yn > 0, then we

have an infinite number or discrete, real possible values for Yn as the

derivative of the Airy function has an infinite number of discrete roots,

confined to the negative real axis. This su,g,_,ests that there are an

infinite number of modes.

We shall now compare these rcsul Is _i Ih nttn_crically determined results

Yn, (4.24)

for large values of n.

4.2

number of 3.8 and at the point _, = 0.2 along the cylinder.

present results for adiabatic wall condi lions.

Firstly let us consider the :tsymplotic expansion for c

of large n. The leading order term in the c expansion

equation (4.13) and using the numeric:lily determined values

Numerical Results

All the results presented in this section arc [or a freestream Mach

We only

TW : 3.379,

we have

= 0. 1525,

in the limit

e 0. is given by

(4.25)

c o = 0.7978. (4.26)
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The first order correction term. which for adiabatic wall conditions

is given by equation (4.23), is computed to have the value

c I = 0.3698 Yn,

where we have used W0rl(0) = 0.1904 and 7n are the zeros of the

derivative of the Airy function. The first six possible values of 7n

determined from tables (Abramowitz & Stegun (16)) and the corresponding

values of c I are shown in table I

(4.27)

are

Cl

0.3698 (I)

1.2092 (II)

1.7750 (III)

2.5146 (IV)

2.9214 (V)

3.3282 (Vl)

TABLE I: VALUES OF e I

Figure 4a shows a plot of c( = cO + n "2/3 el), as determined

asymptotically, against n for the different values of the first order

correction term c 1, where the numbering refers to the numbering of the

correction terms in Table I. (It should be noted that only n integer has

physical significance, although Figs. 4a and 4b show c as a continuous

function of n.) From hereon we shall refer to the different values of

c as order I to VI inclusively corresponding to the numbering convention of

the correction terms in Table I.

Now as observed above, our asymptotic analysis suggests the existence

of an infinite, discrete number of possible values for c. When we searched

for the eigenvalues numerically, for large n, we determined that there

were indeed many modes. Figure 4b displays two plots of c r against n

for order I and order V correction terms. Graph (1) in each case represents
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the asymptotic curve and graph (2) is the numerically determined curve. It

should be noted that in this range of n and a, Ici! << !

(c i ~ 10 -10 - 10-12), comparable to the machine accuracy of our

computations. From our two sets of plots we note that we have good

agreement between the numerical solutions and asymptotic theory for large

n.

Turning our attention now to the form of the pressure disturbance terms,

as obtained numerically, we find that they do indeed follow the pattern

predicated by our asymptotic theory, being initially oscillatory in the

Airy solution region and then decaying to zero in the far field. It is

also observed that increasing the order of the correction term has the

effect of increasing the number of zeros of the eigensolution. Figure 4c

displays the distributions of Real {P} for n = 40 corresponding to

the orders as shown.

Examining the c expansion again, we have determined that both co

and c 1 are real and therefore the leading order imaginary term, c i,

is at most 0(n-4/3). This means that the leading order term in the growth

is 0(n "1/3) at most. Therefore actual growth rates will

n ....4_ which is confirmed to be true by our numerical

We now turn our attention to the form of the disturbance equations in

the limit _ _ _.

§5 D turbance Equations for Large

In this section we consider the form of the disturbance equations in

the far downstream region, guided by our numerical observations.

5.1 Formulation of the Problem

Consider the pressure disturbance equation, as presented in the previous

section, but written in terms of 'r' rather than '_',
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where

and

TO Pr _2
w -c d r__O__] ;2 + [ __ WOr] _2_ [ ,o-c r (,o-c)

n 2 _2
: T0[ _+_ ] - M2._wo-c)2,

= cP, (5._)

(5.2)

r = 1 + _ 4. (5.3)

In the limit _ -..4 _, we assume a scale of _ of the form

.-4-
ct = ct _, (5.4)

---4- •

where tt is to be determined.

Guided by Duck's (12)Work for the form of the basic flow in the

farfield we define the (small) parameter

= (½ log z)-t = (log _)-t (5.5)

In the slow moving viscous region close to the wall (namely the r=O(1)

lengthscale) we expect asymptotic expansions of the form

c = c o + • c 1 + 0(_2),

O = 00 + _ 1 + 0(_2) ,

TO = Tw + ¢ T 1 + 0(¢2),

w0 = _ _0 + 0(_2) • (5.6)

A

Now, our numerical observations strongly suggest that ¢0 _ 0 as

becomes large in ihe r = 0(1) region (which may be confirmed a posteriori)

which means that ¢ = 0(4). Examination of the ¢ expression reveals that

this is only possible in general if

et = 0(c't).

Therefore we cart redefine the scale (5.4) to have the form

a = _ _ (log 4)t,

(5.7)

(5.8)
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where

= 0(1).

To leading order, equation (5.2) reduces to

*0 Tw M_ "2= _ CO,

but in view of our comments above that _0 _ 0,

then we have

(5.9)

as _ _ _,_ for r = 0(I),

(5.10)

which means c0

At the first order in _ equation (5.2) has the form

_l = TI + - M_ (2 c o c I - 2 co _0), (5.11)

while the 0(_) correction Io the pressure equation (5.2) is given by

Prr ÷ _ Pr + C 2 co MI (Cl _0)- 'l- _-_ ] P = 0. (5.12)

We now transform equation (5.12) using the same transformation as

applied by Duck (12) for the basic flow. Firstly we employ the transform

= lnr, (5.13)

giving

e-2 p,, + [ 2 ;o M2.(;,

Secondly we use the transform

_dr

0 _'

_0) - T1 n2_'_ e'2r ] P = O. (5.1a)

(5.15)

but since Tw is constant with respect to r we can simplify (5.15) to
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r=_T w.

where we take the constant of integration to be zero.

be re-written

(5.16)

Equation (5.14) can

A

n2 T2w } P = 0, (5.17)

where we have made use of the result obtained by Duck (12) for the basic

flow

N0 = K.

Equation (5.17) is solved numerically to obtain a value for

the condition at the wall

(5.18)

^

c 1 subject to

P_IK=0 = O, (5.19)

and that P is bounded in the far-field.

by taking _--.4- limit of (5.17), i.e.

The second condition is obtained

2_ Tw p = 0, (5.20)p_ _ _2 _ e

where g2 = 2 c0 M_ _2 Tw" (5.21)

k

We find, to leading order, this equation has a decaying soiutlon of the

form

(5.22)

5.2 Numerical Results

All the results presented in this section correspond to a free-stream

Maeh number of 3.8, and azimuthal wavenumber n=l.
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Fromour numerical observations we obtain a value for the leading order

term in the c expansion (5.6) of the form

c O = 0.4617922. (5.23)

Using a fourth order Runge-Kutta scheme equation, (5.17) was solved

subject to conditions (5.19) and (5.22) to determine the eigenvalues c 1. We

find that for a given value of _ there appears to be a large number of
4

discrete, real values for c t. Figure 5a displays a plot of c 1 against

corresponding to the first five modes, as shown.

As observed above, our asymptotic analysis implies the existence of

a large number of discrete possible values for c I, which in turn implies

the existence of a large number of discrete values for c r. When we

searched for the eigenvalues by solving the full system of equations

numerically, for large 4, we determined that there were indeed many modes

and we managed to identify the first five modes. Figure 5b displays a

comparison between the asymptotically determined value of c r and the

numerically determined value of c r against _ corresponding to the first

mode. We have relatively good agreement, since the error term in the

asymptotic theory is 0(_2), which is quite large. Therefore the numerical

results seem to confirm our asymptotic theory.

The asymptotic theory presented above tells us nothing about c i and

consequently reveals no information about the growth rate aci; such an

investigation would require a prohibitive amount of algebra.

We now move on to consider the form of the disturbance equations in the

limit of small (large) _ for cooled/heated wall conditions on a cone.
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§6 Disturbance Equations for small _

In this section we consider the effect wall heating/cooling has on the

asymptotic theory developed by DS for the limit _ ----¢0 (and also with

some simple modification the limit _ --._ in the case of a cone) for the

description of mode IA. It should be noted that the analysis in this

section is also applicable for a cone, the circular cylinder case being

retrieved when k = O. We find that when we impose heated/cooled wall

conditions, instead of adiabatic conditions as treated by DS, the asymptotic

theory is rather different. Here we consider the case of a ---¢ O, _ _ O,

In DS it was shown that the disturbance equation for _ in the limit

_---_ 0 (assuming n _ 0) reduces to

d (wO-c) Wo_[ l + %_2 + _nl 2
{ To E1 + _;2 + ;n)Jf(1 + x;2 + ;_) ,_ + ;_j _ _ }TO

n 2 42
= TO (wo-c). (6.1)

_ O, we assume expansions for the n = o(I) scale ofIn the limit

the form

where wOO(rl)

c = tE 1 + _2E 2 + _3_ 3 + .... (6.2)

= _O(n) + _l(n) + _2_2(n) + _3_3(n) + .... (6.3)

w0 = wOO(H) + _w01(n ) + _2w02(_ ) + _3w03(_ ) + .... (6.4)

T O = T00(H ) + _ T01(n) + _2T02(_ ) + _3T03(n) + .... (6.5)

and To0(n) represent the planar values of the velocity and

temperature profiles respectiveiy, and WOl(_) and TOl(n) etc. correspond

to the perturbations to the basle flow caused through curvature. A more

complete expansion for _ is given in DS.

To leading order, we have for _ = 0(1) that

40 = AO w00(R), (6.6)
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where A0 represents an arbitrary amplitude parameter.

At the next order in _ we obtain the equation for _I

wOO _lq - AO wooq _I + A0 w002 - W0Orl_I

+ A0 WOl w00q - A0 w01_ wOO = k I TOO ,

where we have used equation (6.6) and

in equation (6.7) and assuming _llq=O

k I is a constant.

= 0 we have

(6.7)

Setting _ = 0

where

T = I + n ; = o(1),

then we must have an outer solution of the form

out -n-I
_0 = A r ,

A A

h = A0 + _ AI + ....

and so we must also have

_. - = 1 =1= -(n+I)Ao.

Substituting this into (6.7) yields

_1 n TOO (H=O)
= _oo_ (n =o)

In order to obtain complex values of

must consider higher orders in _,

At the next order of

(6.13)

c in our asymptotic analysis we

we have the system

(6.9)

(6.10)

(6.11)

(6.12)

Defining

AO El w0Orl (n =0) = kl TOO (D=0). (6.8)

The boundary conditions as _ ---)_, must be compatible with the form

of system (6.1) in the far-field (as presented in DS), together with (6.6).
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wOO _2q + 2k wOO _Orl + 2_ woo _I_ + w02 _o_

" w02n _0 + WOl _Iq + q2 woo _0_ - FI _In

+ 2 WOl _ _Orl + WOl _0 - w01q _I - 2q WOl_ _0

- 2_ _I _Oq - 52 _Oq + wOO _I + _ wOO _0

- _! _0 - w00ri _2 - 2_ wo0 n _0 - 2q _1 w00_

n_ w
- -oo = +: I°

+ k I T01.

We now determine the leading order imaginary component of the complex

wavespeed c. Since (6.14) contains only real coefficients, any

imaginaries must, of necessity, only arise at a critical point, where

c = wOO. Since c = 0(_), this must occur when _ = 0(_). We therefore

consider a thin layer relative to the _ = 0(I) scale, namely

= n/_ = o(1).

On this scale, the expansion for

where the $i

generally 0(1) quantities.

The leading order equation has the form

$o = AO_ wqon (_ = 0)

(where AO was introduced in equation (6.6)).

At the next order in _ we obtain the S_yst'em

_woo_(O)Y - 5il _I_ - _l woo_(O)= _1

+ ½ y-2woorl_(b) AO wooq(O ) _ AO _l wo0_(O) TOOq(O ) _,
Too(O)

where _I is a constant term.

further, as in

is expected to develop as

= _ _0 (_) + _2 _1 (7) + _3 _2 (7) + ....

are expected to be normalised in such a way as to be

This system cannot be simplified any

(6.14)

(6.15)

(6.16)

(6.17)

DS, since the condition Wo(yqq(_=O) = 0, no longer holds

(6.18)
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in the present (i.e. heated/cooled wall) case.

As in DS, we assume A0 and E l to be real quantities, as we are

at liberty to do so, and now consider _i (where i denotes an imaginary

component). This quantity is triggered by the +in jump in the logarithm

across the critical layer, We can re-write (6.18) in the form

[ woon(o) Y - _l ] _l_ - _l woon(o) = R, (6.19)

where

and find

R = E l + ½ _'2 wo0_(O) AO wo0_(O ) _ AO 51WOOn(O)Tno.(O )
Too(O ) _ . ,

(6.20)

Y

_I : [woon(O) 9 " _111 R d9
0 [wOOn(O) 9-_112

(6.21)

Evaluating this integral, taking just the imaginaries together with the

limit as y .-4 _, yields

' /$1 - _ A0 _[ [woorl(0) _'-_'11 WoOnrlco)
woo2rl(O)

TOOn(O) 1
Too(O) wo0_(O)

(6.22)

: Bi [WO0)l(0) _ " _'11,

where Bi : _ A0 _'l _ W°°nn(°) Toon(O) _ (6.23)
I woo2rl(O) Too(O) WOOrl(0) J

Equation (6.22) now provides a lower boundary condition for systems (6,7)

and (6.14).

Assuming (6.7) contains real coefficients only (El is assumed real,

an assumption that may be justified a posteriori) we have

i = Bi
91 wo0(_), (6.24)

where Bi is defined in (6.23).
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Considering the imaginary part of system (6.14) in the limit

we obtain

1"] -....4

_ .--., ** rl ...._ **

By the form of ¢p in the far-field (as presentcd in

-- (n+l) Bi ,

DS)

(6.25)

we requi re

(6.26)

and therefore

i
k 2 = _ Bin. (6.27)

We now consider the imaginary part of (6.14) evaluated at _ = O

i -i

_'1 ¢Plr111.1=0- c2 _oq [,rl=0
i _ T00(0)

- w00_(0) _21_=0 = k2

Using the results

(6.28)

i = Bi woon(O),

if = _ Bi F1,
92 q=O

(6.29)

we obtain

2

-i = n2 x Too(q=O) { woonn(q=O)
c2 w 3 (_=0) t woo_(n=O)O0

TOOn(_=O)
TO0(_=O) t"

(6.30)

Using the governing equations of motion we can simplify (6.30) to the form

-i 2g TO02(0) wOOnn(0 )
c2 = n2 4

woon(O)
(6.31)

Comparing this result with the adiabatic result, as obtained in DS,

we note that the first imaginary term in c is an order in _ larger for

heated/cooled wall conditions, implying larger growth rates in the present

ease. The ratio of the leading-order imaginary terms has the form
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Heated/Cooled c i =

Adiabatic c i

2 W0Onn(0)

w00q(0 ) [1+2o M2_ (y-l)n]

(6.32)

We find, however, that altering the wall conditions from adiabatic

conditions as treated by DS, to heated/cooled wall conditions, has little

significant effect on the asymptotic analysis for the mode I lower neutral

point for which a = 0(4½).

§7. Conclusions

In this paper we have investigated the supersonic boundary-layer flow,

and the inviscid stability thereof, over axisymmetric bodies (with

particular emphasis on a long thin, straight circular cylinder) subject to

heated or cooled wall conditions.

The effect of wall cooling is, generally, seen to reduce the importance

of the ''first mode'' of inviscid instability, while the amplification rates

of the ''second mode" of inviscid instability are increased. Therefore we

have agreement with the effect wall cooling has on planar boundary layers

(Mack (11), for example).

The converse effect is observed with wall heating. The amplification

rates of the "first mode'' of instability increases, while wall-heating

causes the ''second mode'' of instability to be stabilized. Wail-heating

may also cause the formation of a second subsonic generalised inflexional

mode, which results in the appearance of an additional mode of instability,

not found in adiabatic or cooled-wall studies.

Asymptotic studies for large azimuthal wavenumbers and far downstream

distances reveal that the real part of the eigenvalue c is non-unique

in both limits, suggesting that there exists an infinite number of discrete

possible values for the real part of c in both these limits, although the

corresponding values of the imaginary part of c are exceedingly small.
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